

AFOSR-TR. 20 - 0338

OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

by

VÁCLAV E. BENEŠ

Bell Telephone Laboratories Murray Hill, N. J. 07974

and

IOANNIS KARATZAS+

Columbia University New York, N. Y. 10027

February 29, 1980

MAY 1 6 1980

Presented at the Ninth Conference on Stochastic Processes and their Applications, Evanston, Illinois, August 1979.

+Current'y with the Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. Research supported in part by the Air Force Office of Scientific Research, under -AFOSR 76-3063

14 038

Approved for public release; distribution unlimited.

25

COUNTY CONSOLERY OF THE STATE O	
PREPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
AFOSR/TR-80-0338 AD-A014350	
4 TITLE (and Su atto)	S. TYPE OF REPORT & PERIOD COVERED
OPTIMAL STATIONARY LINEAR CONTROL OF THE	Interim reo.
WIENER PROCESS .	6 PERSONNING ON REPORT NUMBER
7. AUTHOR(s)	CONTRACT OR GRANT NUMBER(+)
VACLAV E. BENES IOANNIS KARATZAS	AFOSR-76-3063
	10 DOCCRAN EL ENENT DROIEGY TASK
DIVISION OF APPLIED MATHEMATICS	10. PROGRAM ELEMENT, PROJECT, TASK
BROWN UNIVERSITY	16 t 17 (17)
PROVIDENCE, RHODE ISLAND 02912	61102F 2394/A4
11. CONTROLLING OFFICE NAME AND ADDRESS AIR FORCE OFFICE OF SCIENTIFIC RESEARCH	9 FEB
BOLLING AIR FORCE BASE	13. NUMBER OF RACES
WASHINGTON, D.C.	31
14. MONITORING AGENCY NAME & ADDRESS(II dilleront from Controlling Office)	15. SECURITY CLASS. (of this report)
(12 34/	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from	om Report)
18. SUPPLEMENTARY NOTES	
Ninth Conference on Stochastic Processes and the Evanston, Illinois, Aug 1979.	eir Applications,
19. KEY WORDS (Continue on reverse aide if necessary and identify by block number	,)
	· · · · · · · · · · · · · · · · · · ·
$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	91834 Jul
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
In the present paper we consider the fol problem: minimize the average expected to	llowing stommstic control otal cost
1 1 /T	
$J(x,u) = \lim_{T \to \infty} \inf \frac{1}{T} E_x^u \int_0^T [\phi(\xi_t) + u_t]$	(ξ)]dt
subject to $d\xi_t = u_t(\xi)dt + dw_t, \xi_0 = x;$	$ u \leq 1$, w_{t} Wiener, with
	TO THE THEORY WILLI

20. Abstract cont. Unclassified

state process $\{\xi_s; s \le t\}$ admissible as controls. It is proved that under very mild conditions on the running cost function $\phi(\cdot)$ the optimal law is of the form

$$u_{t}(\xi) = -1, \xi_{t} > b$$

= 0, $|\xi_{t}| \le b$
= 1, $\xi_{t} < -b$.

The cutoff point $\,b\,$ and the performance rate of the optimal law $\,u^{\,\star}\,$ are simultaneously determined in terms of the function $\,\varphi(\,\cdot\,)\,$ through a simple system of integrotranscendental equations.

-	Access						
	DDC TAL	oc TAB lannounced stification					
ľ	By						
	Availability Codes						
	Dist.	Avail ar specia					

D			PETADON.
		1980	
	F-7		

UNCLASSIFIED

OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

Václav E. Benes and Ioannis Karatzas

ABSTRACT

In the present paper we consider the following stochastic control problem: minimize the average expected total cost

$$J(x,u) = \lim_{T\to\infty} \inf \frac{1}{T} E_x^u \int_0^T [\phi(\xi_t) + |u_t(\xi)|] dt$$

subject to $d\xi_t = u_t(\xi)dt + dw_t$, $\xi_0 = x$; $|u| \le 1$, w_t Wiener, with all bounded by unity and measurable functionals on the past of the state process $\{\xi_s; s \le t\}$ admissible as controls. It is proved that under very mild conditions on the running cost function $\phi(\cdot)$ the optimal law is of the form

$$u_{t}^{*}(\xi) = -1, \xi_{t} > b$$

$$= 0, |\xi_{t}| \le b$$

$$= 1, \xi_{t} < -b.$$

The cutoff point b and the performance rate of the optimal law u^* are simultaneously determined in terms of the function $\phi(\cdot)$ through a simple system of integrotranscendental equations.

OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

1. INTRODUCTION

In this paper we consider the problem of stationary control of the stochastic differential equation $d\xi_t = u_t(\xi)dt + dw_t; \xi_0 = x$, where $(w_t) = \{w_t; t \geq 0\}$ is a Wiener process on an underlying probability space. (Ω, \mathcal{F}, P) .

Two kinds of cost are involved in this problem. First, one pays $\phi(\xi_t)$ per unit time for being in the wrong state \mathcal{H}_t , where $\phi(\cdot)$ is a suitable cost function to be described later; secondly, one pays $\phi(\xi_t)$ per unit time for using the control law $\psi(\xi_t)$. The control problem is to choose a law $\psi(\xi_t)$ as a non-anticipative functional of the solution process $\phi(\xi_t)$ with values in the bounded interval [-1,1], so as to minimize the average expected total cost.

It is proved that the optimal law can be explicitly described and its performance characterized in terms of the cost function $\phi(\cdot)$. The method consists in first restricting attention to an important subclass of admissible control laws, namely those giving rise to an ergodic solution process (ξ_t) . A process is said to be ergodic if it admits a unique invariant distribution. The optimal law u^* in this subclass can be obtained by using a dynamic programming approach, similar to that of Wonham [11]; it turns out that u^* is of the form

$$u_{t}^{*}(\xi) = -sgn \xi_{t}, |\xi_{t}| > b$$

$$= 0, |\xi_{t}| \le b$$

where b is a positive constant that can be characterized in terms of the function $\phi(\cdot)$. Secondly, the law u^* is proved optimal against any possible nonanticipative law u whatsoever.

The result (1.1) is the natural and expected one; it says that the best policy is to push ξ_t with full force in the negative direction if it is too positive and in the negative direction if it is too negative, while refraining from any action if ξ_t is inside a "dead-zone" [-b,b]. The appearance of the latter is a consequence of the running cost |u| on the control, of the fact that the control is "expensive". Were such a cost absent, it is fairly obvious - ane easily probable by using the methods of the present paper - that the optimal policy would be described by the "bang-bang" law: $-\text{sgn }\xi_+$.

Among previous works on the topic of stationary control of systems driven by a Wiener process we cite those of Wonham [11] and Kushner [8]. The scope of both was severely restricted, however, in that they allowed only those laws that generate an ergodic solution process (actually, only a subclass of these was considered).

2. FORMULATION

Consider the space $\Omega = C_{[0,T]}$ of real-valued, continuous functions on [0,T], for some T>0. Let (ξ_t) denote the family of evaluation functionals on $C_{[0,T]}$ and $\mathscr{T}_t, 0 \le t \le T$ the σ -field of subsets of $C_{[0,T]}$ generated by $\{\xi_s; s \le t\}$.

Consider also the σ -field $\mathscr M$ of subsets M of $[0,T] \times C_{[0,T]}$ having the property that, for any $t \in [0,T]$, M_t belongs to $\mathscr F_t$ and that each ξ -section M_ξ of M, $\xi \in C_{[0,T]}$, is Lebesgue measurable

A function g defined on $[0,T] \times C[0,T]$ is \mathcal{M} -measurable if

and only if $g(t,\cdot)$ is \mathcal{M}_t -measurable, for each t, and $g(\cdot,\xi)$ is Lebesgue measurable, for each ξ .

Definition 2.1: Let the control measure space be the interval [-1,1] with its Borel sets. An admissible nonanticipative control $\frac{1}{2}$ is a measurable function u: ([0,T] × C_[0,T], \mathcal{M}) + [-1,1]. The class of all such control laws is denoted by \mathcal{U} .

For any control law $u \in \mathcal{U}$ and any $x \in \mathbb{R}$, a weak solution (ξ_t) to the stochastic differential equation

(2.1)
$$d\xi_{t} = u_{t}(\xi)dt + dw_{t}; \quad 0 \le t \le T$$

is constructed as follows: one starts with the probability space $(\Omega, \mathcal{F}_T, P)$, where P is Wiener measure on $\Omega = C_{[0,T]}$. Corresponding to each law $u \in \mathcal{U}$ and each initial position $x \in \mathbb{R}$, the new measure

$$(2.3) P_{\mathbf{x}}^{\mathbf{u}}(d\omega) = \exp \left[\int_{0}^{T} u_{\mathbf{t}}(\xi) dw_{\mathbf{t}} - \frac{1}{2} \int_{0}^{T} u_{\mathbf{t}}^{2}(\xi) d\mathbf{t} \right] \cdot P(d\omega)$$

is constructed on (Ω, \mathcal{F}_T) , where (ξ_t) is the process defined by $\xi_t = x + w_t$; $0 \le t \le T$. According to Girsanov [5], P_x^u is a probability measure on (Ω, \mathcal{F}_T) and the process

(2.4)
$$\tilde{w}_t \stackrel{\Delta}{=} w_t - \int_0^t u_s(\xi) ds = \xi_t - x - \int_0^t u_s(\xi) ds$$

is a Wiener process on $(\Omega, \mathcal{F}_T, P_X^u)$. Equation (2.4) is an equivalent way of saying that the process (ξ_t) , $\xi_t = x + w_t$; $0 \le t \le T$ satisfies the stochastic differential equation

(2.1)'
$$d\xi_t = u_t(\xi)dt + d\tilde{w}_t; \quad 0 \le t \le T$$

$$(2.2) \xi_0 = x$$

on $(\Omega, \mathscr{F}_T, P^u_X)$. All processes involved here are adapted to the underlying family (\mathscr{F}_t) of sub- σ -fields of \mathscr{F}_T . The process (ξ_t) is called a <u>weak solution</u> of (2.1)'-(2.2) because by construction $\sigma(\tilde{w}_s; s \le t) \subseteq \sigma(\xi_s; s \le t)$, though not necessarily the other way around. Such a solution is known to be unique in the sense of the probability law; see Liptser and Shiryayev [9].

Now consider a function $\phi: \mathbb{R} \to \mathbb{R}^+$ which is even, convex piecewise $C^{(2)}$, monotonically increasing to infinity on x > 0, and satisfying an exponential growth condition:

(2.5)
$$\phi(x) = O(e^{\alpha |x|})$$
 as $|x| \to \infty$, some $0 < \alpha < 2$.

The optimal control problem can now be formulated as follows: choose a law $u \in \mathcal{U}$ for which the limit

$$J(x,u^*) = \lim_{T \to \infty} \frac{1}{T} E_x^{u^*} \int_{0}^{T} (\phi(\xi_t) + |u_t^*(\xi)|) dt$$

exists for all $x \in \mathbb{R}$, and which minimizes the average expected total cost rate

(2.6)
$$J(x,u) = \liminf_{T \to \infty} \frac{1}{T} E_x^u \int_0^T [\phi(\xi_t) + |u_t(\xi)|] dt$$

of starting at place x and using control law u, for all $(x,u) \in [\mathbb{R}^{\times} \mathcal{U}]$. E^u_x denotes expectation with respect to the probability measure P^u_x introduced in (2.3).

3. SUMMARY

In Section 4 we briefly study the important subclass of feed-back (Markov) admissible control laws. It is pointed out (and in the special case of time-homogeneous feedback laws, proved) that for such controls the stochastic differential equation (2.1)-(2.2) of the system can be solved in the strong sense.

In Section 5 we consider a subclass of time-homogeneous feed-back laws that give rise to an ergodic solution process. Asymptotic properties of those processes, such as existence of a unique invariance measure, laws of large numbers and ergodicity of their distributions are discussed.

The optimal law u^* in the abovementioned subclass is discerned in Section 6 and it is proved that u^* is of the form (1.1). Both the cutoff point b and the asymptotic performances λ rate of u^* are characterized in terms of the cost function $\phi(\cdot)$, through the system of integrotranscendental equations (6.3), (6.4). The method proceeds by constructing a solution to the "asymptotic" version of the Bellman equation of dynamic programming (6.2).

Finally, the asymptotic performance of the law u^* is compared against that of any admissible nonanticipative control u in \mathcal{U} . The result, proved in Section 7, is that u^* is actually

optimal in the (largest possible) class \mathscr{U} . The idea employed here is to first compare the performance of the control laws over finite time intervals [0,T] and then pass to the limit as $T \rightarrow$

4. MARKOV LAWS AND STRONG SOLUTIONS

Definition 4.1. Suppose there exists a measurable function $\gamma\colon\mathbb{R}\times[0,T]\to[-1,1]$ such that the nonanticipative law $u\in\mathcal{U}$ can be represented in the form

(4.1)
$$u_t(\xi) = \gamma(\xi_t, t), \text{ any } \xi \in C_{[0,T]}, 0 \le t \le T.$$

Then u is called an admissible Markov law. The class of all such laws will henceforth be denoted by \mathscr{A} ; obviously $\mathscr{A} \subseteq \mathscr{U}$.

For laws in 🖋 the stochastic differential equation

(4.2)
$$d\xi_t = \gamma(\xi_t, t)dt + dw_t, \quad \xi_0 = x$$

is known to possess a pathwise unique, strong nonanticipative solution, in the sense that the solution is adapted to the Wiener process: $\sigma(\xi_s; s \le t) \subseteq \sigma(w_s; s \le t)$, $0 \le t \le T$; see Zvonkin [12]

<u>Definition 4.2.</u> Consider the subclass of \mathscr{A} consisting of those admissible nonanticipative laws u for which there exists a measurable function a: $\mathbb{R} + [-1,1]$, such that

(4.3)
$$u_t(\xi) = a(\xi_t), \text{ any } \xi \in C_{[0,T]}, 0 \le t \le T.$$

Such laws u are called <u>admissible time-homogeneous Markov laws</u> and their class is denoted by \mathscr{U} .

For laws in \mathscr{U} one can easily construct the (pathwise unique) strong solution to the stochastic differential equation

$$d\xi_{t} = a(\xi_{t})dt + dw_{t}, \quad 0 \le t \le T$$

$$(4.4)$$

$$\xi_{0} = x.$$

Indeed, consider the function

(4.5)
$$\beta(x) = \int_{0}^{x} \exp\{-2\int_{0}^{y} a(z)dz\}dy; x \in \mathbb{R}$$

which is continuous, strictly increasing and satisfies the equation $\beta'' \,\,+\,\, 2a\beta' =\, 0\,. \quad \mbox{The function}$

$$\sigma(x) = \beta'(\beta^{-1}(x)); \quad x \in \mathbb{R}$$

is Lipschitz continuous, as can be checked by simple calculus. Therefore the stochastic differential equation

(4.7)
$$d\zeta_t = \sigma(\zeta_t)dw_t; \ 0 \le t \le T$$

$$\zeta_0 = \beta(x)$$

has for any $x \in \mathbb{R}$ a pathwise unique solution (ζ_t) on the probability space $(\Omega, \mathcal{F}_T, P)$, strong in the sense that

 $\sigma(\zeta_s; s \le t) \subseteq \sigma(w_s; s \le t)$, any $0 \le t \le T$, according to Itô's classical theory; see for instance Gihman and Skorohod [4]. Denote by $\{\Omega, \mathscr{F}_T, \mathscr{F}_t, \zeta_t, P^u_{\beta(x)}\}$ the corresponding time-homogeneous Markov process

The process

$$\xi_{t} = \beta^{-1}(\zeta_{t})$$

is now well defined, and an application of Itô's rule gives

$$d\xi_{t} = \frac{1}{\beta'(\beta^{-1}(\zeta_{t}))} d\zeta_{t} - \frac{1}{2} \frac{\beta''(\beta^{-1}(\zeta_{t}))}{(\beta'(\beta^{-1}(\zeta_{t})))^{3}} \sigma^{2}(\zeta_{t})dt$$
$$= a(\xi_{t})dt + dw_{t}.$$

So (ξ_t) satisfies both the equation and the initial condition in (4.4) and because it is a bijection of (ξ_t) pointwise in time:

$$\sigma\{,_s; s \le t\} = \sigma\{\zeta_s; s \le t\} \subseteq \sigma\{w_s; s \le t\}, \quad 0 \le t \le T$$

i.e. (ξ_t) is a strong solution to (4.4). The corresponding time-homogeneous Markov process is denoted by $\{\Omega, \mathcal{F}_T, \mathcal{F}_t, \xi_t, P_x^U\}$.

5. SOME ERGODIC THEOREMS

Introduce the function $G(x) \stackrel{\Delta}{=} \int_{-\infty}^{x} \frac{dz}{\sigma^{2}(z)}$, $\sigma(\cdot)$ as in (4.6), and consider the subclass \mathscr{L} of \mathscr{U} , consisting of those laws

 $u, u_t(\xi) = a(\xi_t)$ for which

(5.1)
$$G(\infty) = \int_{-\infty}^{\infty} \frac{dz}{\sigma^2(z)} = \int_{-\infty}^{\infty} \exp\{2 \int_{0}^{y} a(z)dz\} dy < \infty;$$

recall also the processes $(\xi_t), (\zeta_t)$ of the preceding section, corresponding to this law. According to Gihman and Skorohod [4; §18], the probability distribution $\frac{G(\cdot)}{G(\infty)}$ is ergodic for the Markov process $\{\Omega, \mathcal{F}_T, \mathcal{F}_t, \zeta_t, P_z\}$ in the sense that the following are true:

Fact 1. Positive Recurrence: The stopping times τ_{zy} = inf{t: $\zeta_t = y$ } are well defined and a.s. finite for any z, y $\in \mathbb{R}$; besides,

(5.2)
$$E_z^u(\tau_{zy}) < G(\infty)(2+|z-y|)|z-y|.$$

Fact 2. Invariance of the Probability Distribution Function $G(\cdot)/G$. For any $0 \le t \le T$,

(5.3)
$$\int_{-\infty}^{\infty} P_z^{u} \{\zeta_t \leq y\} dG(z) = G(y), \quad y \in \mathbb{R}.$$

Fact 3. Law of Large Numbers: For any Borel function $f(\cdot)$ such that $\int_{-\infty}^{\infty} |f(y)| dG(y) < \infty$, we have

(5.4)
$$\lim_{T\to\infty} \frac{1}{T} \int_0^T f(\zeta_t) dt = \frac{1}{G(\infty)} \int_{-\infty}^{\infty} f(y) dG(y);$$

a.s.
$$(P_z^u)$$
 and $L^1(E_z^u)$, any $z = \zeta_0 \in \mathbb{R}$.

Fact 4. Ergodicity of the Distributions: For any function $f(\cdot)$ as above,

7

(5.5)
$$\lim_{t\to\infty} E_z^u f(\zeta_t) = \frac{1}{G(\infty)} \int_{-\infty}^{\infty} f(y) dG(y), \text{ any } z = \zeta_0.$$

As a consequence:

$$\lim_{t\to\infty} P_z^{u}\{\zeta_t \le y\} = \frac{G(y)}{G(\infty)}, \quad y \in \mathbb{R}.$$

It follows from the properties of the function $\beta(\cdot)$ introduced in (4.5) that the limiting distributions of the processes (ζ_t) and (ξ_t) exist simultaneously. Consequently, the probabilidistribution function $\frac{F(\cdot)}{F(\infty)}$, where

(5.6)
$$F(x) \stackrel{\triangle}{=} G(\beta(x)) = \int_{-\infty}^{x} \frac{dy}{\beta'(y)} = \int_{-\infty}^{x} \exp\{2 \int_{0}^{y} a(z)dz\} dy,$$

is invariant for the Markov process $\{\Omega, \mathcal{F}_T, \mathcal{F}_t, \xi_t, P_x^u\}$. The ergodi properties of the latter can be read off from those of the (ξ_t) process:

(5.4)'
$$\frac{1}{T} \int_0^T f(\xi_t) dt \xrightarrow[T \to \infty]{} \frac{1}{F(\infty)} \int_{-\infty}^{\infty} f(y) dF(y), \text{ a.s. } (P_x^u) \text{ and } L^1(E^1)$$

(5.5)'
$$\lim_{t\to\infty} E_x^{u} f(\xi_t) = \frac{1}{F(\infty)} \int_{-\infty}^{\infty} f(y) dF(y),$$

any Borel function f(') such that:

$$\int_{-\infty}^{\infty} |f(y)| dF(y) < \infty, \text{ any } x = \xi_0 \in \mathbb{R}.$$

<u>Proposition 5.1</u>: For any law $u \in \mathcal{L}$, $u_t(\xi) = a(\xi_t)$, the corresponding solution process $\xi_t^u = \xi_t$ of the system equation (4.4) is a strongly Feller process, pocessing a unique invariant probability distribution $F^u(\cdot)/F^u(\infty)$, $F^u(x) = F(x)$ as in (5.6), for which (5.3)' - (5.5)' hold.

<u>Proof.</u> All that remains to be proven is the strong Feller property and the uniqueness of the invariant distribution, and it suffices to do both on the (ζ_t) process. The latter is indeed strongly Feller, since (5.1) implies a fortiori: $\sigma^2(z) \geq \sigma^2$, all $z \in \mathbb{R}$, some $\sigma^2 > 0$; see Wonham [10]. On the other hand (ζ_t) is recurre and positive, by (5.2). For such processes, Khas'minskii [7] proves the existence of a unique invariant distribution, Q.E.D.

Definition 5.2. For the constant α of (2.5), $0 < \alpha < 2$, let \mathscr{L}_{α} be the subclass of \mathscr{L} consisting of those laws u, $u_t(\xi) = a(\xi_t)$ for which

(5.7)
$$\int_{-\infty}^{\infty} e^{\alpha |x|} dF^{u}(x) = \int_{-\infty}^{\infty} e^{\alpha |x|} \exp\{2 \int_{0}^{x} a(z) dz\} dx < \infty.$$

It is evident from (5.4)' and the assumption (2.5) that, for any $u \in \mathcal{L}_{\alpha}^{2}$:

$$J(u) = J(x,u) = \lim_{T \to \infty} \frac{1}{T} E_{x}^{u} \int_{0}^{T} [\phi(\xi_{t}) + |u_{t}(\xi)|] dt$$

$$= \frac{1}{F^{u}(\infty)} \int_{-\infty}^{\infty} [\phi(y) + |a(y)|] dF^{u}(y),$$

any $x = \xi_0 \in \mathbb{R}$.

6. THE OPTIMAL LAW IN \mathscr{L}_{lpha}

(6.1)
$$c(p) \stackrel{\Delta}{=} \min_{|u| \le 1} (up + |u|) = 1 - |p|, |p| \ge 1$$
$$= 0, |p| < 1.$$

Our objective is to find a positive constant λ and a function v(x), twice continuously differentiable on $\mathbb R$ and $O(e^{\alpha |x|})$ as $|x| + \infty$, with $0 < \alpha < 2$ as in (2.5), satisfying the Dynamic Programming equation

(6.2)
$$\lambda \approx \frac{1}{2} v_{XX}(x) + c(v_{X}(x)) + \phi(x), \quad x \in \mathbb{R}.$$

We start with a preliminary result.

Lemma 6.1. Under the assumptions on the running cost function $\phi(\cdot)$ made in section 2, there exists a unique solution (λ,b) to the pair of equations

(6.3)
$$\lambda b - \int_{0}^{b} \phi(s) ds = \frac{1}{2}$$

(6.4)
$$\lambda = 2 \int_{0}^{\infty} e^{-2s} \phi(b+s) ds.$$

<u>Proof.</u> It suffices to prove that equation H(x) = 0,

(6.5)
$$H(x) = 2x \int_0^\infty e^{-2s} \phi(x+s) ds - \int_0^x \phi(s) ds - \frac{1}{2},$$

has a unique solution b on \mathbb{R}^+ . Indeed, H(0) = -1/2 and

$$H'(x) = 2 \int_0^\infty e^{-2s} [\phi(x+s) - \phi(x)] ds + 2x \int_0^\infty e^{-2s} \phi'(x+s) ds \ge x \phi'(x), \quad x > 0.$$

Clearly, $H(x) \rightarrow \infty$ as $x \rightarrow \infty$, so there exists a unique number b>0, such that H(b) = 0, Q.E.D.

The constants (λ,b) being as in the previous Lemma, consider the function v(x) with v(0) = 0 and derivative given by

$$v_{x}(x) = 2\lambda x - 2 \int_{0}^{x} \phi(s) ds \qquad ; \quad 0 \le x \le 1$$

$$= 1 + \lambda \left[e^{2(x-b)} - 1\right] - 2 \int_{b}^{x} e^{2(x-s)} \phi(s) ds; \quad x > b$$

$$= -v_{x}(-x) \qquad ; \quad x < b.$$

Proposition 6.2. The function v(x) defined above is the unique (up to an additive constant) solution of (6.2) in $C^{(2)}(\mathbb{R})$, with λ determined along with the constant b through (6.3)-(6.4). v(x) is also the smallest nonnegative function satisfying equation (6.2).

<u>Proof.</u> From (6.6), $v_x(b+) = 1$ while $v_x(b-) = 2\lambda b - 2 \int_0^b \phi(s) ds$ by (6.3). Therefore $v_x(x)$ is continuous on \mathbb{R} . On the other hand

$$v_{xx}(x) = 2(\lambda - \phi(x)) \qquad ; 0 \le x \le 1$$

$$= 2 \left[\lambda e^{2(x-b)} - \phi(x) - 2 \int_{b}^{x} e^{2(x-s)} \phi(s) ds \right]; \quad x > b$$

$$= v_{xx}(-x) \qquad ; \quad x < 0$$

is clearly continuous on \mathbb{R} . From (6.4) and the fact that $\phi(\cdot)$ is strictly increasing on \mathbb{R}^+ one gets: $v_{xx}(x) \ge 2(\lambda - \phi(b)) > 0$, on $0 \le x \le b$, as well as

$$v_{xx}(x) = 2\left[2\int_{x}^{\infty} e^{-2(s-x)}\phi(s)ds - \phi(x)\right] > 0, \text{ on } x > b.$$

The function v(x) is even and strictly convex, therefore minimal among nonnegative solutions of (6.2). By strict convexity, $0 < v_{\chi}(x) < 1$, on 0 < x < b and $v_{\chi}(x) > 1$, on x > b. It remains to verify (6.2), which in the present case becomes

$$\lambda = \frac{1}{2} v_{xx}(x) + \phi(x) \qquad ; |x| \le b$$

$$= \frac{1}{2} v_{xx}(x) + 1 - v_{x}(x) + \phi(x); x > b$$

$$= \frac{1}{2} v_{xx}(x) + 1 + v_{x}(x) + \phi(x); x < -b.$$

(6.2)' is readily verified, by substitution. Uniqueness of $v_{x}(x)$ is a consequence of Lipschitz continuity of the function c(p) defined in (6.1).

Proposition 6.3. Suppose that $\tilde{\lambda}, \tilde{\nu}(x)$ are a constant a $C^{(2)}(\mathbb{R})$ function, respectively, for which (6.2) is satisfied, and such that

(i)
$$0 < \tilde{v}_{x}(x) < 1$$
, $0 < x < \tilde{b}$

(ii)
$$\tilde{v}_{\chi}(x) = 1$$
,

(iii)
$$\tilde{v}_{\mathbf{x}}(\mathbf{x}) > 1, \mathbf{x} > \tilde{\mathbf{b}},$$

for some positive constant \tilde{b} .

Then the function $\tilde{v}(x)$ is necessarily strictly convex, therefore $\tilde{v}_{x}(x)$ is strictly increasing, $\tilde{b} \leq b$ and

$$(6.8) \tilde{\lambda} \geq \lambda.$$

<u>Proof.</u> It is a straightforward exercise to verify that $\tilde{v}_{\chi}(x)$ will necessarily be of the form (6.6), with $(\tilde{\lambda}, \tilde{b})$ replacing (λ, b) . A necessary and sufficient condition for continuity of $\tilde{v}_{\chi}(x)$ is then

$$(\widetilde{6.3}) \qquad \qquad \widetilde{\lambda}\widetilde{b} - \int_{0}^{\widetilde{b}} \phi(s) ds = 1/2,$$

while (iii) implies

(6.9)
$$\tilde{\lambda} > \frac{2 \int_{b}^{x} e^{2(x-y)} \phi(y) dy}{e^{2(x-\tilde{b})} - 1} = \frac{2 \int_{0}^{x-\tilde{b}} e^{-2s} \phi(\tilde{b}+s) ds}{1 - e^{-2(x-\tilde{b})}}, \text{ all } x > \tilde{b}.$$

A necessary and sufficient condition for (6.9) is (6.10) below:

(6.10)
$$\tilde{\lambda} \geq 2 \int_0^\infty e^{-2s} \phi(\tilde{b}+s) ds.$$

Indeed, if $\tilde{\lambda} < 2 \int_0^\infty e^{-2s} \phi(\tilde{b}+s) ds$ holds, then (6.9) is eventually false as $x \to \infty$. On the other hand, suppose that (6.10) is true; to prove (6.9) it suffices to prove

(6.11)
$$(1-e^{-2t}) \int_0^\infty \phi(\tilde{b}+s)e^{-2s}ds > \int_0^t \phi(\tilde{b}+s)e^{-2s}ds, \text{ all } t > 0$$

where $t = x - \tilde{b}$. But (6.11) is equivalent to:

$$\int_{t}^{\infty} e^{-2s} [\phi(\tilde{b}+s) - \phi(\tilde{b}+s-t)] ds > 0, \quad \text{all} \quad t > 0,$$

which is obviously true since $\phi(\cdot)$ is strictly increasing.

Relations (6.3), (6.10) are therefore necessary and sufficient conditions for the feasibility of (i)-(iii). They imply that $H(\tilde{b}) \leq 0$, $H(\cdot)$ being the function introduced in (6.5). But $H(\cdot)$ is strictly increasing so $\tilde{b} \leq b$ and therefore $\tilde{\lambda} > \lambda$, from (6.3) and (6.10). Strict convexity of $\tilde{\nu}(x)$ is proven as in Proposition 6.2, Q.E.D.

Once the solution of the dynamic programming equation (6.2) corresponding to the smallest possible value of the constant λ has been constructed, we proceed to prove the main result of this section, namely the optimality in the class \mathscr{L}_{α} (Definition 5.2) of the law $u_t^*(\xi) = a^*(\xi_t)$, with

(6.12)
$$a^*(x) = -sgn(x, |x| > b)$$

= 0, |x| < b

obtained through the minimization

(6.13)
$$a^*(x) \cdot v_X(x) + |a^*(x)| = \min_{|u| \le 1} [u \cdot v_X(x) + |u|] = c(v_X(x)), \text{ all } x \in \mathbb{R}$$

$$\underline{\text{Lemma 6.4}}. \quad v(x) = O(e^{\alpha |x|}), \text{ as } |x| + \infty.$$

Proof. It is checked that for all x large enough

$$v_{x}(x) = 1 - \lambda + 2e^{2x} \int_{x}^{\infty} e^{-2y} \phi(y) dy \le 1 - \lambda + \frac{2c}{2-\alpha} e^{\alpha x},$$

some c > 0. The result follows readily.

Remark. Dr. Martin Day has noted that, for any other pair $(\tilde{\lambda}, \tilde{b})$ as in Proposition 6.3, the functions $v_{\chi}(x), v(x)$ have a growth of the order $e^{2|x|}$, as $|x| \to \infty$.

Theorem 6.5. The law $u^* \in \mathcal{C}_{\alpha}$, defined through

$$u_t^*(\xi) = a^*(\xi_t), \text{ all } \xi \in C_{[0,T]}, 0 \le t \le T,$$

with $a^*(\cdot)$ as in (6.12), is optimal in \mathscr{C}_{α} . Furthermore:

$$J(u^*) = \lambda.$$

<u>Proof.</u> Consider any law $u \in \mathcal{L}_u$ and the Markov process $\{\Omega, \mathcal{F}_T, \mathcal{F}_t, \xi_t^u, P_x^u\}$ -solution to the stochastic differential equation (4.4). An application of Itô's rule to the process $v(\xi_t^u)$, along with (6.13) and equation (6.2), yields

$$\begin{split} \nu(\xi_{t}^{u}) &- \nu(x) = \int_{0}^{t} \left[\frac{1}{2} \nu_{xx}(\xi_{s}^{u}) + u_{s}(\xi^{u}) \nu_{x}(\xi_{s}^{u}) \right] \mathrm{d}s + \int_{0}^{t} \nu_{x}(\xi_{s}^{u}) \mathrm{d}w_{s} \\ &\geq \int_{0}^{t} \left[\frac{1}{2} \nu_{xx}(\xi_{s}^{u}) + c(\nu_{x}(\xi_{s}^{u})) - |u_{s}(\xi^{u})| \right] \mathrm{d}s + \int_{0}^{t} \nu_{x}(\xi_{s}^{u}) \mathrm{d}w_{s} \\ &\geq \lambda t - \int_{0}^{t} \left[\phi(\xi_{s}^{u}) + |u_{s}(\xi^{u})| \right] \mathrm{d}s + \int_{0}^{t} \nu_{x}(\xi_{s}^{u}) \mathrm{d}w_{s}, \text{ a.s. } (P_{x}^{u}). \end{split}$$

Taking expectations, and noting that

$$E_{x}^{u}\int_{0}^{t}v_{x}^{2}(\xi_{s}^{u})ds \leq Const.e^{2\alpha(|x|+t)}E_{x}^{u}\int_{0}^{t}e^{2\alpha|w_{s}|}ds < \infty,$$

one gets:

$$(6.14) \quad \frac{E_x^u v(\xi_t^u)}{t} - \frac{v(x)}{t} + \frac{1}{t} E_x^u \int_0^t \left[\phi(\xi_s^u) + |u_s(\xi^u)| \right] ds \geq \lambda, \quad \text{all} \quad x.$$

From (5.5)', (5.7) and Lemma (6.4) one gets

$$\lim_{t\to\infty} E_x^u v(\xi_t^u) = \frac{1}{F^u(\infty)} \int_{-\infty}^{\infty} v(y) dF^u(y), \text{ any } x \in \mathbb{R}.$$

while taking (5.8) into account and letting $t \rightarrow \infty$ in (6.14):

$$J(u) \ge \lambda$$
, any $u \in \mathscr{L}_{\alpha}$.

On the other hand, (6.14) holds as an equality if $u = u^*$. Therefore

$$J(u^*) = \lambda$$
.

The last two relations prove optimality of u^* in \mathscr{L}_{α} . The density of ${\mathscr{F}^u}^*(\cdot)$ is given by

$$p_{*}(y) = (1+2b)^{-1}, |y| \le b$$

$$= (1+2b)^{-1} \exp[-2(|y|-b)], |y| > b.$$

7. OPTIMALITY OF THE LAW u* in 22

In this section the performance of the law u^* of Theorem 6.5 is compared against the performance of any admissible nonanticipative control law u, and u^* is proven optimal in the class $\mathscr U$.

The method consists in considering the finite-horizon optimization problem: minimize

$$E_{x}^{u} \int_{0}^{T} [\phi(\xi_{s}) + |u_{s}(\xi)|] ds$$

subject to $d\xi_t = u_t(\xi)dt + dw_t$, $\xi_0 = x$ and $u \in \mathcal{U}$. Roughly speaking, the value function

$$V(x,\tau) = \inf_{u \in \mathcal{U}} E_x^u \int_{T-\tau}^T [\phi(\xi_s) + |u_x(\xi)|] ds; (x,\tau) \in \mathbb{R} \times [0,T]$$

solves the Cauchy problem

(7.1)
$$V_{\tau} = \frac{1}{2} V_{xx} + c(V_x) + \phi(x); \quad (x,\tau) \in \mathbb{R} \times (0,T].$$

$$(7.2) V(x,0) = 0: x \in \mathbb{R},$$

where $c(\cdot)$ is the function defined in (6.1).

For any law $u \in \mathcal{U}$, Itô's rule gives

$$E_x^u \int_0^T [\phi(\xi_s) + |u_s(\xi)|] ds \ge V(x,T),$$

and optimality of u* would follow if it were proved that:

$$\lim_{T\to\infty} \frac{V(x,T)}{T} = \lambda, \quad \text{all} \quad x \in \mathbb{R}.$$

In the remaining of this section we justify the method and substantiate the above heuristics.

Lemma 3.1: A priori bounds on the solution of the Bellman equation and its gradient. Suppose that the Cauchy problem (7.1), (7.2) has a $C^{2,1}$ solution $V(x,\tau)$ on $\mathbb{R} \times (0,T]$, with $V(x,\tau)$ continuous on $\mathbb{R} \times [0,T]$. Then the following inequalities hold:

$$(7.3) V(x,\tau) < v(x) + \lambda \tau, \text{ on } \mathbb{R} \times [0,T],$$

(7.4)
$$|V_{\mathbf{x}}(\mathbf{x},\tau)| \leq v_{\mathbf{x}}(|\mathbf{x}|)$$
, on $\mathbb{R} \times [0,T]$.

<u>Proof.</u> It is immediately verified that the function $M(x,\tau) = v(x) + \lambda \tau \quad \text{is a } C^{2,1} \quad \text{solution in } \mathbb{R} \times (0,T] \quad \text{of the }$ Cauchy problem

(7.5)
$$M_{\tau} = \frac{1}{2} M_{xx} + c(M_x) + \phi(x); \text{ on } \mathbb{R} \times (0,T]$$

(7.6)
$$M(x,0) = v(x)$$
, on \mathbb{R}

and that, if $\mathscr L$ is the parabolic operator

$$\mathcal{L} = \frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{c(v_x) - c(v_x)}{v_x - v_x} \frac{\partial}{\partial x} - \frac{\partial}{\partial \tau}.$$

70

then

$$\mathcal{L}(M-N) = 0$$
, in $\mathbb{R} \times (0,T]$
 $M(x,0) - V(x,0) = V(x) \ge 0$, on \mathbb{R} .

By the maximum principle (see [3]) one obtains (7.3).

Now consider a sequence $\{c_n(p), n \in \mathbb{N}\}$ of smooth (piecewise \mathbb{C}^2) approximations to the function c(p), with $c_n(p) \leq 0$ a.e. on along with the functions $V^{(n)}(x,\tau)$, $M^{(n)}(x,\tau)$ satisfying (7.1), (7.2) and (7.5), (7.6) respectively, with $c(\cdot)$ replaced by $c_n(\cdot)$ Under such an approximating scheme, $V^{(n)}(x,\tau)$, $V^{(n)}_{x}(x,\tau)$, $V^{(n)}_{xx}(x,\tau)$ converge as $n \to \infty$ to $V(x,\tau)$, $V_{x}(x,\tau)$, $V_{xx}(x,\tau)$ respectively, uniformly on compact (x,τ) sets. Similarly for the function $M(x,\tau)$ and its approximations.

It is easily checked that if \mathscr{L}_1 is the parabolic operator

$$(7.7) \qquad \mathcal{L}_{1} = \frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} - \dot{c}_{n}(M_{x}^{(n)}) \frac{\partial}{\partial x} + \frac{\dot{c}_{n}(M_{x}^{(n)}) - \dot{c}_{n}(V_{x}^{(n)})}{M_{x}^{(n)} - V_{x}^{(n)}} V_{xx}^{(n)} \cdot - \frac{\partial}{\partial \tau} ,$$

$$\mathcal{L}_{1}(M_{x}^{(n)} - V_{x}^{(n)}) = 0, \text{ on } \mathbb{R}^{+} \times (0,T]$$

then:

$$M_X^{(n)}(x,0) - V_X^{(n)}(x,0) = v_X(x) \ge 0$$
, on \mathbb{R}^+ .

It can be shown by yet another application of the maximum principle

that $V_{XX}^{(n)}(x,\tau) \ge 0$ on $\mathbb{R} \times [0,T]$. Therefore, the potential term $\frac{\dot{c}_n(M_X^{(n)}) - \dot{c}_n(V_X^{(n)})}{M_X^{(n)} - V_X^{(n)}} V_{XX}^{(n)}$ is nonpositive on $\mathbb{R}^+ \times [0,T]$, so that the

the strong maximum principle is applicable (see [3]) and gives $V_X^{(n)}(x,\tau) \leq M_X^{(n)}(x,\tau), \text{ or } V_X(x,\tau) \leq M_X(x,\tau) = V_X(x) \text{ on } \mathbb{R}^+ \times [0,T]$ in the limit as $n \to \infty$. (7.4) follows since $V_X(\cdot,\tau)$ is odd, Q.E.D.

Once the a priori bounds (7.3), (7.4) have been established, one can apply the method of Theorem VI 6.2 of Fleming and Rishel [2] to prove the following result:

Proposition 7.2. The Cauchy problem (7.1)-(7.2) has a unique $C^{2,1}$ solution $V(x,\tau)$ on $\mathbb{R}\times (0,T]$ that is continuous on $\mathbb{R}\times [0,T]$ and even in x.

By the approximation argument used in the proof of Lemma 7.1 (or directly; see [2], Exercise VI.9) it can be shown that $V_{xx}(x,\tau) \ge 0$ in $\mathbb{R} \times [0,T]$.

Consider the optimal process (n_t^T) for the finite horizon problem, defined on the probability space (Ω, \mathcal{F}, P) as the (strong) solution of the stochastic differential equation

(7.8)
$$d\eta = \dot{c}(V_X(\eta_t^{\tau}, \tau - t))dt + dw_t; \quad 0 \le t \le \tau$$

(7.9)
$$\eta_0^{\tau} = x > 0$$

where $\dot{c}(p) = -sgnp \cdot 1_{\{|p|>1\}} = a^*(p)$.

Lemma 7.3. For any x > 0, consider the stopping time

S =
$$\inf\{t \le \tau; \ \eta_t^{\tau} = 0\}$$

= τ , if $\eta_t^{\tau} > 0$, all $0 \le t \le \tau$.

Then

(7.10)
$$V_{x}(x,\tau) = E \int_{0}^{S} \dot{\phi}(\eta_{t}^{\tau}) dt.$$

<u>Proof.</u> The gradient V_x of the solution to the Cauchy problem (7.1)-(7.2) is not a $C^{2,1}$ function; it belongs, however, to the Sobolev space $W_p^{2,1}(D\times [0,T])$, for any p>1 and any bounded subset $D\subseteq \mathbb{R}$, and satisfies in that space the equation $(V_x)_\tau=\frac{1}{2} \left(V_x\right)_{xx}+\dot{c}(V_x)(V_x)_x+\dot{\phi}(x)$ on $\mathbb{R}\times (0,T]$, derived from (7.1) by formal differentiation. For functions in the Sobolev space a generalized Itô formula holds (Zvonkin [12], Theorem 3) which, applied to $V_x(\eta_t^\tau,\tau^-t)$ on [0,S] along with (7.8) and the fact that $V_x(\eta_S^\tau,\tau^-S)=0$, a.s., yields (7.10), Q.E.D.

Consider now the "optimal process (ξ_t^*) for the stationary control problem":

$$d\xi_{t}^{*} = \dot{c}(v_{x}(\xi_{t}^{*}))dt + dw_{t}, \quad t \ge 0$$

(7.12)
$$\xi_0^* = x,$$

defined on the same probability space (Ω, \mathcal{F}, P) and with the same initial condition as for (7.8), (7.9).

Lemma 7.4.
$$|\xi_t^*| \le |\eta_t^{\tau}| \le |x + w_t|$$
, $0 \le t \le \tau$; a.s.(P).

<u>Proof.</u> An easy consequence of the comparison theorem of Ikeda and Watanabe [6] and (7.4) of Lemma 7.1.

From (7.10) notice that, for any $\tau > 0$, $V_{\chi}(\cdot,\tau)$ increases to infinity as $x + \infty$, since $\phi(\cdot)$ does. Therefore, for any $\tau \to 0$,

(7.13)
$$s(\tau) = \max\{x > 0; V_x(x,\tau) = 1\}$$

is well-defined and finite.

Lemma 7.5. $s(\tau)$ is left continuous and decreasing on \mathbb{R}^+ .

<u>Proof.</u> It can be checked that for the approximating functions introduced in the proof of Lemma 7.1: $\mathcal{L}_1(V_{x\tau}^{(n)}) = 0$ in $\mathbb{R} \times (0,T]$, \mathcal{L}_1 being the operator defined in (7.7), and $V_{x\tau}^{(n)}(x,0) = \phi(x) \ge 0$, on \mathbb{R}^+ . By a maximum principle argument: $V_{x\tau}^{(n)}(x,\tau) \ge 0$ on $\mathbb{R}^+ \times [0,T]$, and therefore $V_x(x,\tau_2) \ge V_x(x,\tau_1)$, $0 \le \tau_1 < \tau_2$, $x \ge 0$ in the limit as $n \to \infty$. This proves the monotonicity of $s(\cdot)$. Left continuity is an easy consequence of definition (7.13) and monotonic

Lemma 7.6. $\lim_{\tau \to \infty} V_X(x,\tau) = V_X(x)$, uniformly on compact x-sets.

Proof. Notice that

$$(v_{x}-V_{x})_{\tau} = \frac{1}{2} (v_{x}-V_{x})_{xx} + \dot{c}(v_{x})(v_{x}-V_{x})_{x} + V_{xx}(\dot{c}(v_{x}) - \dot{c}(V_{x}))$$

$$\leq \frac{1}{2} (v_{x}-V_{x})_{xx} + \dot{c}(v_{x})(v_{x}-V_{x})_{x},$$

on IR × (0,T], by convexity of V, monotonicity of \dot{c} and (7.4). An application of the generalized Itô formula to $v_x(\xi_t^*) - V_x(\xi_t^*, \tau_t)$ gives:

$$0 \le v_{X}(x) - V_{X}(x,\tau) \le E v_{X}(\xi_{R}^{*}) = \int_{\{R=\tau\}} v_{X}(\xi_{\tau}^{*}) dP,$$

where:

R = inf{t
$$\leq \tau$$
: $\xi_t^* = 0$ }
= τ , if $\xi_t^* > 0$, all $0 \leq t \leq \tau$.

We note that: $E \ v_X^{1+\delta}(|\xi_{\tau}^*|) \xrightarrow{\tau + \infty} \int_{-\infty}^{\infty} v_X^{1+\delta}(|y|) p_*(y) dy < \infty$ as long as $0 < \delta < \frac{2}{\alpha} - 1$, by virtue of (5.5) and (6.15). So $\sup_{\tau > 0} E v_X^{1+\delta}(|\xi_{\tau}^*|) < \infty, \text{ which implies uniform integrability (and hence also absolute continuity with respect to measure P) of the family of random variables <math>\{v_X(|\xi_{\tau}^*|)\}_{\tau > 0}$. On the other hand,

$$P(R = \tau) \le P(x + w_t > 0, all 0 \le t \le \tau) = 2\phi(x\tau^{-1/2}) - 1 \rightarrow$$

as $\tau \to \infty$, uniformly on compact x-sets; see Gihman and Skorohod [4; §1]. The result follows by uniform absolute continuity.

Corollary. $s(\tau) + b$, as $\tau + \infty$.

Proposition 7.7. $\lim_{\tau \to \infty} \frac{V(x,\tau)}{\tau} = \lambda$, any $x \in \mathbb{R}$.

Proof. That $\limsup_{\tau \to \infty} \frac{V(x,\tau)}{\tau} \le \lambda$, uniformly on compact x-sets, is a consequence of (7.3). To prove the opposite inequality note that, by virtue of Lemma 7.4,

$$V(x,\tau) = E \int_{0}^{\tau} [\phi(\eta_{t}^{\tau}) + 1_{\{|\eta_{t}^{\tau}| > s(\tau-t)\}}] dt$$

$$\geq E \int_{0}^{\tau} [\phi(\xi_{t}^{\star}) + 1_{\{|\xi_{t}^{\star}| > s(\tau-t)\}}] dt$$

and therefore, for any $x \in \mathbb{R}$,

$$\frac{V(x,\tau)}{\tau} > \frac{1}{\tau} E \int_0^{\tau} [\phi(\xi_t^*) + 1_{\{|\xi_t^*| > b\}}] dt -$$

(7.14)
$$-\frac{1}{\tau} \int_{0}^{\tau} \{F_{t,x}(s(\tau-t)) - F_{t,x}(b) - \{F_{t,x}(-s(\tau-t))\} \} dt$$

where

$$F_{t,x}(y) = P\{\xi_t^* \leq y | \xi_0^* - x\} \xrightarrow[t\to\infty]{} F^*(y) = \int_{-\infty}^y p_*(z) dz.$$

 $F^*(\cdot)$ is the ergodic probability distribution function correspondint to the optimal law u^* in \mathscr{L}_{α} . Now

(7.15)
$$\lim_{\tau \uparrow \infty} \frac{1}{\tau} \int_{0}^{\tau} [F_{t,x}(s(\tau-t)) - F_{t,x}(b) - F_{t,x}(b)] dt = 0.$$

Indeed, the integrand in (7.15) is dominated by

2 sup $|F_{t,x}(y) - F^{*}(y)|$, which tends to zero as $t \to \infty$, because $y \in \mathbb{R}$ is (absolutely) continuous and $F_{t,x} \xrightarrow{c} F^{*}$ (see [1], p. 25 Ex. 8.1.13). Hence

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (F_{t,x}(s(\tau - t)) - F_{t,x}(b)) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} F^*(s(\tau - t)) - F^*(b)) dt = 0$$

since $\lim_{t\to\infty} F^*(s(t)) = F^*(b)$, by the Corollary to Lemma 7.6. By the same token, the entire second term on the right hand side of (7.14) converges to zero as $\tau \to \infty$, while the first term converges to λ . Therefore, for any $x \in \mathbb{R}$:

$$\lim_{\tau \to \infty} \inf \frac{V(x,\tau)}{\tau} \ge \lambda$$
, Q.E.D.

We are now in a position to prove the main result of this section.

Theorem 7.8. The law u^* of Theorem 6.5 is optimal in the class $\mathscr U$ of admissible nonanticipative controls, i.e. for any $u \in \mathscr U$, $x \in \mathbb R$:

(7.16)
$$J(x,u) = \lim_{T\to\infty} \inf \frac{1}{T} E_x^u \int_0^{\tau} [\phi(\xi_t^u) + |u_t(\xi)|] dt \ge \lambda = J(u^*).$$

<u>Proof.</u> Take any law $u \in \mathcal{U}$ along with the Girsanov solution process (ξ_t^u) satisfying $d\xi_t^u = u_t(\xi^u)dt + d\tilde{w}_t$, $\xi_0^u = x$ on $(\Omega, \mathcal{F}_T, P_x^u)$ as in Section 2, and apply Itô's rule to the process $V(\xi_t^u, T-t)$, $V(x, \tau)$ being the function of Proposition 7.2:

$$\begin{split} V(x,T) &= V(\xi_0^u,T) - V(\xi_T^u,0) = -\int_0^T [u_t(\xi^u)V_x(\xi_t^u,T-t)] \\ &+ \frac{1}{2}V_{xx}(\xi_t^u,T-t) - V_t(\xi_t^u,T-t)] dt - \int_0^\tau V_x(\xi_t^u,T-t) d\widetilde{w}_t. \end{split}$$

Because $c(p) = \min_{|u| \le 1} (up+|u|)$, we get

$$(7.17) \quad V(x,T) \leq \int_{0}^{T} [\phi(\xi_{t}^{u}) + |u_{t}(\xi^{u})|] dt - \int_{0}^{T} V_{x}(\xi_{t}^{u}, T-t) d\tilde{w}_{t} \text{ a.s. } (P_{x}^{u}),$$

$$\text{any } x \in \mathbb{R}, T > 0.$$

The expectation of the stochastic integral on the right hand side of (7.17) is zero, because

$$E_{\mathbf{x}}^{\mathbf{u}} \int_{0}^{T} v_{\mathbf{x}}^{2} \xi_{\mathbf{t}}^{\mathbf{u}}, T-\mathbf{t}) d\mathbf{t} \leq E_{\mathbf{x}}^{\mathbf{u}} \int_{0}^{T} v_{\mathbf{x}}^{2} (\xi_{\mathbf{t}}^{\mathbf{u}}) d\mathbf{t} \leq \text{const. } e^{2\alpha(|\mathbf{x}|+T)} \int_{0}^{T} E(e^{2\alpha|\mathbf{w}_{\mathbf{t}}|}) d\mathbf{t} < \infty$$

by virtue of (7.4), and it follows from (7.17) by taking expectations that

$$\frac{V(x,T)}{T} \leq \frac{1}{T} E_x^u \int_0^T [\phi(\xi_t^u) + |u_t(\xi^u)|] dt; \text{ any } x \in \mathbb{R}, T > 0.$$

'(7.16) is obtained by a passage to the limit as $T \rightarrow \infty$ and taking into account the assertion of Proposition 7.7.

REFERENCES

- [1] CHOW, Y. S. AND TEICHER, H. (1978) Probability Theory:
 Independence, Interchangeability, Martingales, Springer-Verlagerlin.
- [2] FLEMING, W. H. AND RISHEL, R. W. (1975) Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin.
- [3] FRIEDMAN, A. (1964) Partial Differential Equations of Parabol Type, Prentice Hall, Englewood Cliffs, N. J.
- [4] GIHMAN, I. I. AND SKOROHOD, A. V. (1972) Stochastic Differential Equations, English Translation, Springer-Verlag, Berlin.
- [5] GIRSANOV, I. V. (1960) On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theor. Probability Appl. 5, 285-301.
- [6] IKEDA, N. AND WATANABE, S. (1977) A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math. 14, 619-633.
- [7] KHAS'MINSKII, I. Z. (1960) Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theor. Probability Appl. 5, 179-195.
- [8] KUSHNER, H. J. (1978) Optimality conditions for the average cost per unit time problem with a diffusion model, <u>SICON</u> 16, 330-346.
- [9] LIPTSER, R. S. AND SHIRYAYEV, A. N. (1977) Statistics of Random Processes, English Translation, Springer-Verlag, Berlin
- [10] WONHAM, W. M. (1966) Liapunov criteria for weak stochastic stability, J. Diff. Eqs. 2, 195-207.
- [11] WONHAM, W. M. (1967) Optimal stationary control of a linear system with state dependent noise, <u>SICON</u> 3, 486-500.
- [12] ZVONKIN, A. K. (1974) A transformation of the phase space of a diffusion process that removes the drift, Math. USSR (Sbornik) 22, 129-149.